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Abstract
We describe a class of completely integrable G-invariant magnetic geodesic
flows on (co)adjoint orbits of a compact connected Lie group G with a magnetic
field given by the Kirillov–Konstant 2-form.
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Mathematics Subject Classification: 70H06, 37J35, 53D25

1. Introduction

Let Q be a smooth manifold with a local coordinate system x1, . . . , xn and Riemannian metric
g = (gij ). The inertial motion of the unit mass particle under the influence of the additional
magnetic field given by a closed 2-form,

� =
∑

1�i<j�n

Fij (x) dxi ∧ dxj ,

is described by the following equations on the phase space T ∗Q:

dxi

dt
= ∂H

∂pi

,
dpi

dt
= −∂H

∂xi
+

n∑
j=1

Fij

∂H

∂pj

, (1)

where pj = gij ẋ
i are canonical momenta and the Hamiltonian is H(x, p) = 1

2

∑
gijpipj .

Here gij are the coefficients of the tensor inverse to the metric.
Equations (1) are Hamiltonian with respect to the symplectic form ω + ρ∗�, where

ω = ∑
dpi ∧ dxi is the canonical symplectic form on T ∗Q and ρ : T ∗Q → Q is the natural

projection. Namely, the corresponding Poisson bracket is given by

{f, g} =
n∑

i=1

(
∂f

∂xi

∂g

∂pi

− ∂g

∂xi

∂f

∂pi

)
+

n∑
i,j=1

Fij

∂f

∂pi

∂g

∂pj

, (2)

and the Hamiltonian equations ḟ = {f,H } read (1). The flow (1) is called magnetic geodesic
flow on the Riemannian manifold (Q, g) with respect to the magnetic field �.
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In this letter we consider G-invariant magnetic geodesic flows on (co)adjoint orbits O of
a compact connected Lie group G, where � is the Kirillov–Konstant 2-form (theorem 1). The
non-commutative integrability of the systems, for the normal metrics, is proved recently by
Efimov [5, 6]. Following [3], we give a new, short proof of the non-commutative integrability
(theorem 2). In addition, the usual Liouville integrability by means of commuting analytic
integrals is shown. One can use the commuting integrals in order to deform the normal metric
to a certain class of G-invariant metrics on O with completely integrable magnetic geodesic
flows as well (theorem 3).

2. Magnetic coadjoint orbits

Let G be a compact connected Lie group with the Lie algebra g = TeG. Let us fix some
AdG-invariant scalar product 〈·, ·〉 on g. By the use of 〈·, ·〉 we identify g∗ with g.

Consider the adjoint action of G and the G-orbit O(a) = AdG(a) through an element
a ∈ g. Let ξ ∈ g and x = Adg(a). Since

ξx = d

ds
Adexp(sξ)(x)|s=0 = [ξ, x], (3)

the tangent space TxO(a) is simply [g, x], i.e., it is the orthogonal complement to ann(x) =
{η ∈ g|[η, x] = 0}. By definition, the Kirillov–Konstant symplectic form � on O(a) is a
G-invariant form, given by

�(η1, η2)|x = −〈x, [ξ1, ξ2]〉, ηi = [ξi, x], i = 1, 2. (4)

Similarly, the scalar product 〈·, ·〉 induces the normal metric K0 on O(a) as follows:

K0(η1, η2)|x = 〈ξ1, ξ2〉, ηi = [ξi, x], i = 1, 2. (5)

The cotangent bundle T ∗O(a) can be realized as a submanifold of g × g

T ∗O(a) = {(x, p)|x = Adg(a), p ∈ ann(x)⊥},
with the paring between p ∈ T ∗

x O(a) and η ∈ TxO(a) given by p(η) = 〈p, η〉. Then the
canonical symplectic form ω on T ∗O(a) can be seen as a restriction of the canonical linear
symplectic form of the ambient space g × g:

∑dim g

i=1 dpi ∧ dxi, where pi, xi are coordinates
of p and x with respect to some base of g.

The G-action

g · (x, p) = (Adgx, Adgp) (6)

is Hamiltonian on (T ∗O(a), ω). From (3) we find that the momentum mapping is given by
the relation 〈�0(x, p), ξ 〉 = 〈p, ξx〉 = 〈p, [ξ, x]〉. That is

�0(x, p) = [x, p].

Following Efimov [5, 6], we consider magnetic geodesic flows on O(a) with respect to
the magnetic fields ε�, where � is Kirillov–Konstant 2-form (4) and ε ∈ R. According to (1),
the adding of magnetic field ε� to the system reflects as a perturbation of the system
in p-variable by the magnetic force 	ε , determined by 〈	ε, η〉 = −ε

〈
x,

[
ad−1

x η, ad−1
x ẋ

]〉
,

η ∈ TxO(a). Hence 	ε = −εad−1
x ẋ.

The G-action (6) is Hamiltonian on (T ∗O(a), ω + ε�) as well [6, 7]. In our notation we
have that the momentum mapping reads

�ε(x, p) = �0(x, p) + εx = [x, p] + εx.
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2.1. G-invariant magnetic geodesic flows

The G-invariant metrics on O(a) are in one-to-one correspondence with AdGa
-invariant

positive definite operators

ϕ : v → v, Adg ◦ ϕ = ϕ ◦ Adg, g ∈ Ga,

where v = TaO(a) = ann(a)⊥ and Ga is the isotropy group of a. Namely, for a given ϕ, we
define

ϕx = Adg ◦ ϕ ◦ Adg−1 : TxO(a) → TxO(a), x = Adg(a),

and a G-invariant metric Kϕ(η1, η2)|x = 〈ϕxη1, η2〉. After Legendre transformation
TO(a) → T ∗O(a) with respect to Kϕ , we get the Hamiltonian function for the given metric:

Hϕ(x, p) = 1
2

〈
ϕ−1

x p, p
〉
.

Theorem 1. The equations of the magnetic geodesic flow on (O(a),Kϕ) with respect to the
magnetic term ε�, in redundant variables (x, p), are given by

ẋ = ϕ−1
x p, (7)

ṗ = ad−1
x

[
p, ϕ−1

x p
] − prann(x)

[
ad−1

x ϕ−1
x p, p

] − εad−1
x ϕ−1

x p. (8)

In particular, the magnetic flow of the normal metric (5) reads

ẋ = [[x, p], x], (9)

ṗ = [[x, p], p] + ε[x, p]. (10)

Proof. Equation (7) is just the inverse of the Legendre transformation. We can derive (8)
simply by using the conservation of the momentum mapping �ε for G-invariant Hamiltonians.
We have

d

dt
�ε(x, p) = [ẋ, p] + [x, ṗ] + εẋ = 0

= [
ϕ−1

x p, p
]

+ [x, ṗ] + ε
[
x, ad−1

x ϕ−1
x p

] = 0. (11)

Since ϕ−1 is AdGa
-invariant, the term

[
ϕ−1

x p, p
]

belongs to ann(x)⊥. Thus from (11) we get

prann(x)⊥ ṗ = ad−1
x

[
p, ϕ−1

x p
] − εad−1

x ϕ−1
x p. (12)

In order to find prann(x)ṗ, take the (local) orthonormal base e1(x), . . . , er (x) of ann(x).
Then prann(x)ṗ is determined from the condition that the trajectory (x(t), p(t)) satisfies
constraints

d

dt
〈p, ei(x)〉 = 〈ṗ,ei(x)〉 + 〈p, ėi(x)〉 = 0, i = 1, . . . , r. (13)

From [ei(x), x] ≡ 0, i = 1, . . . , r , we get

[ėi (x), x] + [ei(x), ẋ] = [ėi (x), x] +
[
ei(x),

[
x, ad−1

x ϕ−1
x p

]] = 0 i = 1, . . . , r. (14)

Furthermore, combining (14) and the Jacobi identities[
ei,

[
x, ad−1

x ϕ−1
x p

]]
+

[
x,

[
ad−1

x ϕ−1
x p, ei

]]
+

[
ad−1

x ϕ−1
x p, [ei, x]

] = 0, i = 1, . . . , r

we obtain ėi (x) = [
ei(x), ad−1

x ϕ−1
x p

]
(modulo ann(x)). Whence, using (13) we get

〈ṗ, ei(x)〉 +
〈[

ad−1
x ϕ−1

x p, p
]
, ei

〉 = 0, i = 1, . . . , r , i.e.,

prann(x) ṗ=−prann(x)

[
ad−1

x ϕ−1
x p, p

]
. (15)
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The relations (12) and (15) prove (8). Now, for the normal metric K0 we have ϕx =
−ad−1

x ◦ ad−1
x and the Hamiltonian is

H0 = − 1
2 〈adxadxp, p〉 = 1

2 〈[x, p], [x, p]〉 = 1
2 〈�0(x, p),�0(x, p)〉. (16)

Equation (9) follows directly from (7), while (12) and (15) become

prann(x)⊥ ṗ = ad−1
x [p, [x, [p, x]]] + ε[x, p],

prann(x)ṗ = prann(x)[[x, p], p].

Again, the Jacobi identity gives

[p, [x, [p, x]] = [x, [[x, p], p]] = adx(prann(x)⊥ [[x, p], p])

which together with the above formulae proves (10). �

The geometry of the Hamiltonian flows on cotangent bundles, in this representation, is
studied by Bloch, Brockett and Crouch [1]. The system (9), (10), for ε = 0, agrees with
equations (2.7) given in [1], while the system (7), (8) differs from equations (2.19) [1].
Equations (2.19) [1] describe the geodesic flows of submersion (or collective) metrics on the
orbit O(a), and, in general, are not G-invariant. Recall that the submersion metrics are given
by Hamiltonians of the form H = 1

2 〈�0(x, p), φ�0(x, p)〉, where φ is a symmetric, positive
definite operator on g. Specially, K0 is both G-invariant and submersion metric.

3. Integrable flows

Let F ε
1 be the algebra of all analytic, polynomial in momenta, functions of the form

F ε
1 = {p ◦ �ε |p ∈ R[g]} and F2 be the algebra of all analytic, polynomial in momenta,

G-invariant functions on T ∗O(a). Then, according to the Noether theorem{
F ε

1 ,F2
}

ε
= 0,

where {·, ·, }ε are magnetic Poisson bracket with respect to ω + ερ∗�.

Consider the Hamiltonian Hε = 1
2 〈�ε,�ε〉 ∈ F ε

1 . A simple calculation shows H0(x, p)+
ε2 1

2 〈a, a〉. Thus, we see that Hamiltonian flows of H0 and Hε coincide. Since Hε belongs
to F ε

1 it commutes with F2. On the other side, as a composition of the momentum mapping
with an invariant polynomial, the function Hε is also G-invariant and commutes with F ε

1 .
From the above consideration and theorem 2.1 [3] we recover the Efimov result [6]:

Theorem 2. Let G be a compact Lie group and a ∈ g. The magnetic geodesic flows of normal
metric (9), (10) on the adjoint orbit O(a) is completely integrable in the non-commutative
sense.

Namely, the algebra of first integrals F ε
1 +F2 is complete on (T ∗O(a), ω+ερ∗�) (see [3])

and its invariant level sets are isotropic tori. Similarly as in the Liouville theorem, the tori are
filled up with quasi-periodic trajectories of the system (9), (10) (see [9, 11]).

3.1. Integrable deformations

Let A ⊂ R(g) be a commutative set of polynomials with respect to Lie–Poisson brackets on
g. One can always find A that is complete on generic orbits O(�ε(x, p)) (e.g, see [2]). Let
�∗

εA be the pull-back of A by the momentum map: �∗
εA = {h ◦ �ε |h ∈ A}.
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Let B be a commutative subset of F2, with respect to the magnetic Poisson bracket. Then
�∗

εA+B is a complete commutative set on (T ∗O(a), ω+ερ∗�) if B is a complete commutative
subset of F2, i.e., we have

δ = dimO(a) − 1
2 dimO(�ε(x, p)) (17)

independent functions in B, for a generic element (x, p) ∈ T ∗O(a) [4].
The G-invariant polynomial in momenta functions f (x, p) on T ∗O(a) are in one-

to-one correspondence with AdGa
-invariant polynomials on v via restriction to T ∗

a O(a):
f0(p0) = f (a, p0). Next, we apply the transformation

f0 �→ f̄ , f0 = f̄ ◦ �0|x=a = f̄ ◦ ada.

Within these identifications, from (2), (4) and Thimm’s formula for ε = 0 [12], the magnetic
Poisson bracket {f, g}ε(x, p) corresponds to the following bracket (our notation is slightly
different from Efimov’s [6])

{f̄ (µ), ḡ(µ)}εv = −〈µ + εa, [∇f̄ (µ),∇ḡ(µ)]〉, (18)

where µ = [a, p0], x = Adga, p = Adgp0.
Note that

{{·, ·}λv, λ ∈ R
}

is a pencil of the compatible Poisson brackets on the algebra of
AdGa

-invariant polynomials R[v]Ga . By the use of this pencil and the completeness criterion
derived in [2], it is proved that the family of polynomials

Ba = {
pλ

a(µ) = p(µ + λa), λ ∈ R, p ∈ R[g]G, η ∈ v
}
. (19)

is a complete commutative subset of R[v]Ga with respect to the canonical brackets {·, ·}0
v (see

[4, 7]). Here R[g]G is the algebra of AdG-invariant polynomials on g. Using the method
of [2], it can be verified that Ba is a complete commutative set with respect to the magnetic
Poisson bracket (18) as well.

Let b be an element from the centre of ann(a). Define the sectional operator φ̄a,b : v → v

by φ̄a,b = ad−1
a ◦ adb = adb ◦ ad−1

a . For compact groups, among sectional operators we can
take positive definite ones. It easily follows from [8] that the function H̄ a,b = 1

2 〈φ̄a,b(µ), µ〉
belongs to Ba . The corresponding G-invariant function is

Ha,b(x, p) = 1
2 〈adbx

p, adxp〉 = − 1
2

〈
adxadbx

p, p
〉 = 1

2

〈
φx,bx

p, p
〉
,

where bx = Adgb, x = Adga and φx,bx
= −adxadbx

. (Recall that b belongs to the centre of
ann(a) and since G is a compact connected Lie group, Ga is also connected, so bx is well
defined.) This is a Hamiltonian function of the G-invariant metric Ka,b:

Ka,b(η1, η2) = 〈(
adbx

)−1
η1, ad−1

x η2
〉
, (20)

where η1, η2 ∈ TxO(a). Whence, we get the following statement:

Theorem 3. The magnetic geodesic flows of the metrics Ka,b with respect to the magnetic
term ε�:

ẋ = −adxadbx
p = [[bx, p], x],

ṗ= − ad−1
x [p, [x, [bx, p]]] + prann(x)[[bx, p], p] + ε[bx, p]

are completely integrable in the commutative sense, by means of analytic, polynomial in
momenta first integrals.

The Liouville Lagrangian tori are additionally foliated by δ-dimensional invariant
isotropic tori, level sets of integrals F ε

1 + Ba (δ is given by (17)). Note that δ does not
depend on ε: for a generic η ∈ v we have equality dimO(η + εa) = dimO(η) for all ε ∈ R

(see [4, 7]). Therefore, the influence of the magnetic fields ε�, ε ∈ R reflects as a deformation
of the foliation of the phase space T ∗O(a) by invariant tori. As the magnetic field increases,
the magnetic geodesic lines become more curved.
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3.2. Concluding remarks

One can take b such that the operator φx,bx
is positive, but with kernel different from zero. Then

the Hamiltonian flow of Ha,b, for ε = 0, represents an integrable sub-Riemannian geodesic
flow on the orbit O(a) with the constraint distribution D at the point x given by the image

Dx = φx,bx
(T ∗

x O(a)) = adbx
(ann(x))⊥ ⊂ TxO(a)

and the sub-Riemannian structure defined by (20), where now η1, η2 ∈ Dx . Here we assume
that the distribution D is bracket generating (see [10, 4] for more details).

There is a natural generalization of the above results to the class of magnetic potential
systems on coadjoint orbits as well as to the wider class of homogeneous spaces. We shall
consider these problems in the forthcoming paper.
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