Magnetic geodesic flows on coadjoint orbits

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 39 L247
(http://iopscience.iop.org/0305-4470/39/16/L01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 03/06/2010 at 04:18

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Magnetic geodesic flows on coadjoint orbits

Alexey V Bolsinov ${ }^{1}$ and Božidar Jovanović ${ }^{2}$
${ }^{1}$ Department of Mechanics and Mathematics, Moscow State University, 119992, Moscow, Russia
${ }^{2}$ Mathematical Institute SANU, Kneza Mihaila 35, 11000 Belgrade, Serbia
E-mail: bolsinov@mech.math.msu.su and bozaj@mi.sanu.ac.yu

Received 1 February 2006
Published 31 March 2006
Online at stacks.iop.org/JPhysA/39/L247

Abstract

We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with a magnetic field given by the Kirillov-Konstant 2-form.

PACS numbers: 02.30.Ik, 02.40.Vh, 45.20.Jj
Mathematics Subject Classification: 70H06, 37J35, 53D25

1. Introduction

Let Q be a smooth manifold with a local coordinate system x^{1}, \ldots, x^{n} and Riemannian metric $g=\left(g_{i j}\right)$. The inertial motion of the unit mass particle under the influence of the additional magnetic field given by a closed 2 -form,

$$
\Omega=\sum_{1 \leqslant i<j \leqslant n} F_{i j}(x) \mathrm{d} x^{i} \wedge \mathrm{~d} x^{j}
$$

is described by the following equations on the phase space $T^{*} Q$:

$$
\begin{equation*}
\frac{\mathrm{d} x^{i}}{\mathrm{~d} t}=\frac{\partial H}{\partial p_{i}}, \quad \frac{\mathrm{~d} p_{i}}{\mathrm{~d} t}=-\frac{\partial H}{\partial x^{i}}+\sum_{j=1}^{n} F_{i j} \frac{\partial H}{\partial p_{j}} \tag{1}
\end{equation*}
$$

where $p_{j}=g_{i j} \dot{x}^{i}$ are canonical momenta and the Hamiltonian is $H(x, p)=\frac{1}{2} \sum g^{i j} p_{i} p_{j}$. Here $g^{i j}$ are the coefficients of the tensor inverse to the metric.

Equations (1) are Hamiltonian with respect to the symplectic form $\omega+\rho^{*} \Omega$, where $\omega=\sum \mathrm{d} p_{i} \wedge \mathrm{~d} x^{i}$ is the canonical symplectic form on $T^{*} Q$ and $\rho: T^{*} Q \rightarrow Q$ is the natural projection. Namely, the corresponding Poisson bracket is given by

$$
\begin{equation*}
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial x^{i}} \frac{\partial f}{\partial p_{i}}\right)+\sum_{i, j=1}^{n} F_{i j} \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial p_{j}}, \tag{2}
\end{equation*}
$$

and the Hamiltonian equations $\dot{f}=\{f, H\}$ read (1). The flow (1) is called magnetic geodesic flow on the Riemannian manifold (Q, g) with respect to the magnetic field Ω.

In this letter we consider G-invariant magnetic geodesic flows on (co)adjoint orbits \mathcal{O} of a compact connected Lie group G, where Ω is the Kirillov-Konstant 2 -form (theorem 1). The non-commutative integrability of the systems, for the normal metrics, is proved recently by Efimov [5, 6]. Following [3], we give a new, short proof of the non-commutative integrability (theorem 2). In addition, the usual Liouville integrability by means of commuting analytic integrals is shown. One can use the commuting integrals in order to deform the normal metric to a certain class of G-invariant metrics on \mathcal{O} with completely integrable magnetic geodesic flows as well (theorem 3).

2. Magnetic coadjoint orbits

Let G be a compact connected Lie group with the Lie algebra $\mathfrak{g}=T_{e} G$. Let us fix some Ad_{G}-invariant scalar product $\langle\cdot, \cdot\rangle$ on \mathfrak{g}. By the use of $\langle\cdot, \cdot\rangle$ we identify \mathfrak{g}^{*} with \mathfrak{g}.

Consider the adjoint action of G and the G-orbit $\mathcal{O}(a)=\operatorname{Ad}_{G}(a)$ through an element $a \in \mathfrak{g}$. Let $\xi \in \mathfrak{g}$ and $x=\operatorname{Ad}_{g}(a)$. Since

$$
\begin{equation*}
\xi_{x}=\left.\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ad}_{\exp (s \xi)}(x)\right|_{s=0}=[\xi, x], \tag{3}
\end{equation*}
$$

the tangent space $T_{x} \mathcal{O}(a)$ is simply [\mathfrak{g}, x], i.e., it is the orthogonal complement to ann $(x)=$ $\{\eta \in \mathfrak{g} \mid[\eta, x]=0\}$. By definition, the Kirillov-Konstant symplectic form Ω on $\mathcal{O}(a)$ is a G-invariant form, given by

$$
\begin{equation*}
\left.\Omega\left(\eta_{1}, \eta_{2}\right)\right|_{x}=-\left\langle x,\left[\xi_{1}, \xi_{2}\right]\right\rangle, \quad \eta_{i}=\left[\xi_{i}, x\right], \quad i=1,2 \tag{4}
\end{equation*}
$$

Similarly, the scalar product $\langle\cdot, \cdot\rangle$ induces the normal metric K_{0} on $\mathcal{O}(a)$ as follows:

$$
\begin{equation*}
\left.K_{0}\left(\eta_{1}, \eta_{2}\right)\right|_{x}=\left\langle\xi_{1}, \xi_{2}\right\rangle, \quad \eta_{i}=\left[\xi_{i}, x\right], \quad i=1,2 \tag{5}
\end{equation*}
$$

The cotangent bundle $T^{*} \mathcal{O}(a)$ can be realized as a submanifold of $\mathfrak{g} \times \mathfrak{g}$

$$
T^{*} \mathcal{O}(a)=\left\{(x, p) \mid x=\operatorname{Ad}_{g}(a), p \in \operatorname{ann}(x)^{\perp}\right\}
$$

with the paring between $p \in T_{x}^{*} \mathcal{O}(a)$ and $\eta \in T_{x} \mathcal{O}(a)$ given by $p(\eta)=\langle p, \eta\rangle$. Then the canonical symplectic form ω on $T^{*} \mathcal{O}(a)$ can be seen as a restriction of the canonical linear symplectic form of the ambient space $\mathfrak{g} \times \mathfrak{g}: \sum_{i=1}^{\operatorname{dim} \mathfrak{g}} \mathrm{d} p_{i} \wedge \mathrm{~d} x_{i}$, where p_{i}, x_{i} are coordinates of p and x with respect to some base of \mathfrak{g}.

The G-action

$$
\begin{equation*}
g \cdot(x, p)=\left(\operatorname{Ad}_{g} x, \operatorname{Ad}_{g} p\right) \tag{6}
\end{equation*}
$$

is Hamiltonian on $\left(T^{*} \mathcal{O}(a), \omega\right)$. From (3) we find that the momentum mapping is given by the relation $\left\langle\Phi_{0}(x, p), \xi\right\rangle=\left\langle p, \xi_{x}\right\rangle=\langle p,[\xi, x]\rangle$. That is

$$
\Phi_{0}(x, p)=[x, p]
$$

Following Efimov [5, 6], we consider magnetic geodesic flows on $\mathcal{O}(a)$ with respect to the magnetic fields $\epsilon \Omega$, where Ω is Kirillov-Konstant 2-form (4) and $\epsilon \in \mathbb{R}$. According to (1), the adding of magnetic field $\epsilon \Omega$ to the system reflects as a perturbation of the system in p-variable by the magnetic force Π_{ϵ}, determined by $\left\langle\Pi_{\epsilon}, \eta\right\rangle=-\epsilon\left\langle x,\left[\operatorname{ad}_{x}^{-1} \eta, \operatorname{ad}_{x}^{-1} \dot{x}\right]\right\rangle$, $\eta \in T_{x} \mathcal{O}(a)$. Hence $\Pi_{\epsilon}=-\epsilon \operatorname{ad}_{x}^{-1} \dot{x}$.

The G-action (6) is Hamiltonian on $\left(T^{*} \mathcal{O}(a), \omega+\epsilon \Omega\right)$ as well [6, 7]. In our notation we have that the momentum mapping reads

$$
\Phi_{\epsilon}(x, p)=\Phi_{0}(x, p)+\epsilon x=[x, p]+\epsilon x .
$$

2.1. G-invariant magnetic geodesic flows

The G-invariant metrics on $\mathcal{O}(a)$ are in one-to-one correspondence with $\mathrm{Ad}_{G_{a}}$-invariant positive definite operators

$$
\varphi: \mathfrak{v} \rightarrow \mathfrak{v}, \quad \operatorname{Ad}_{g} \circ \varphi=\varphi \circ \operatorname{Ad}_{g}, \quad g \in G_{a}
$$

where $\mathfrak{v}=T_{a} \mathcal{O}(a)=\operatorname{ann}(a)^{\perp}$ and G_{a} is the isotropy group of a. Namely, for a given φ, we define

$$
\varphi_{x}=\operatorname{Ad}_{g} \circ \varphi \circ \operatorname{Ad}_{g^{-1}}: T_{x} \mathcal{O}(a) \rightarrow T_{x} \mathcal{O}(a), \quad x=\operatorname{Ad}_{g}(a)
$$

and a G-invariant metric $\left.K_{\varphi}\left(\eta_{1}, \eta_{2}\right)\right|_{x}=\left\langle\varphi_{x} \eta_{1}, \eta_{2}\right\rangle$. After Legendre transformation $T \mathcal{O}(a) \rightarrow T^{*} \mathcal{O}(a)$ with respect to K_{φ}, we get the Hamiltonian function for the given metric:

$$
H_{\varphi}(x, p)=\frac{1}{2}\left\langle\varphi_{x}^{-1} p, p\right\rangle .
$$

Theorem 1. The equations of the magnetic geodesic flow on $\left(\mathcal{O}(a), K_{\varphi}\right)$ with respect to the magnetic term $\epsilon \Omega$, in redundant variables (x, p), are given by

$$
\begin{align*}
& \dot{x}=\varphi_{x}^{-1} p \tag{7}\\
& \dot{p}=\operatorname{ad}_{x}^{-1}\left[p, \varphi_{x}^{-1} p\right]-\operatorname{pr}_{\operatorname{ann}(x)}\left[\operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p, p\right]-\epsilon \operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p \tag{8}
\end{align*}
$$

In particular, the magnetic flow of the normal metric (5) reads

$$
\begin{align*}
\dot{x} & =[[x, p], x], \tag{9}\\
\dot{p} & =[[x, p], p]+\epsilon[x, p] . \tag{10}
\end{align*}
$$

Proof. Equation (7) is just the inverse of the Legendre transformation. We can derive (8) simply by using the conservation of the momentum mapping Φ_{ϵ} for G-invariant Hamiltonians. We have

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \Phi_{\epsilon}(x, p) & =[\dot{x}, p]+[x, \dot{p}]+\epsilon \dot{x}=0 \\
& =\left[\varphi_{x}^{-1} p, p\right]+[x, \dot{p}]+\epsilon\left[x, \operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p\right]=0 \tag{11}
\end{align*}
$$

Since φ^{-1} is $\operatorname{Ad}_{G_{a}}$-invariant, the term $\left[\varphi_{x}^{-1} p, p\right]$ belongs to ann $(x)^{\perp}$. Thus from (11) we get

$$
\begin{equation*}
\operatorname{pr}_{\operatorname{ann}(x)^{\perp}} \dot{p}=\operatorname{ad}_{x}^{-1}\left[p, \varphi_{x}^{-1} p\right]-\epsilon \mathrm{ad}_{x}^{-1} \varphi_{x}^{-1} p \tag{12}
\end{equation*}
$$

In order to find $\operatorname{pr}_{\operatorname{ann}(x)} \dot{p}$, take the (local) orthonormal base $e_{1}(x), \ldots, e_{r}(x)$ of $\operatorname{ann}(x)$. Then $\operatorname{pr}_{\mathrm{ann}(x)} \dot{p}$ is determined from the condition that the trajectory $(x(t), p(t))$ satisfies constraints

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle p, e_{i}(x)\right\rangle=\left\langle\dot{p}, e_{i}(x)\right\rangle+\left\langle p, \dot{e}_{i}(x)\right\rangle=0, \quad i=1, \ldots, r \tag{13}
\end{equation*}
$$

From $\left[e_{i}(x), x\right] \equiv 0, i=1, \ldots, r$, we get

$$
\begin{equation*}
\left[\dot{e}_{i}(x), x\right]+\left[e_{i}(x), \dot{x}\right]=\left[\dot{e}_{i}(x), x\right]+\left[e_{i}(x),\left[x, \operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p\right]\right]=0 \quad i=1, \ldots, r \tag{14}
\end{equation*}
$$

Furthermore, combining (14) and the Jacobi identities
$\left[e_{i},\left[x, \operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p\right]\right]+\left[x,\left[\operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p, e_{i}\right]\right]+\left[\operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p,\left[e_{i}, x\right]\right]=0, \quad i=1, \ldots, r$
we obtain $\dot{e}_{i}(x)=\left[e_{i}(x), \operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p\right]$ (modulo ann (x)). Whence, using (13) we get $\left\langle\dot{p}, e_{i}(x)\right\rangle+\left\langle\left[\operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p, p\right], e_{i}\right\rangle=0, i=1, \ldots, r$, i.e.,

$$
\begin{equation*}
\operatorname{pr}_{\mathrm{ann}(x)} p=-\mathrm{pr}_{\mathrm{ann}(x)}\left[\operatorname{ad}_{x}^{-1} \varphi_{x}^{-1} p, p\right] . \tag{15}
\end{equation*}
$$

The relations (12) and (15) prove (8). Now, for the normal metric K_{0} we have $\varphi_{x}=$ $-\mathrm{ad}_{x}^{-1} \circ \mathrm{ad}_{x}^{-1}$ and the Hamiltonian is

$$
\begin{equation*}
H_{0}=-\frac{1}{2}\left\langle\operatorname{ad}_{x} \operatorname{ad}_{x} p, p\right\rangle=\frac{1}{2}\langle[x, p],[x, p]\rangle=\frac{1}{2}\left\langle\Phi_{0}(x, p), \Phi_{0}(x, p)\right\rangle . \tag{16}
\end{equation*}
$$

Equation (9) follows directly from (7), while (12) and (15) become

$$
\begin{aligned}
& \operatorname{pr}_{\operatorname{ann}(x) \perp} \dot{p}=\operatorname{ad}_{x}^{-1}[p,[x,[p, x]]]+\epsilon[x, p], \\
& \operatorname{pr}_{\operatorname{ann}(x)} \dot{p}=\operatorname{pr}_{\operatorname{ann}_{(x)}}[[x, p], p] .
\end{aligned}
$$

Again, the Jacobi identity gives

$$
\left[p,[x,[p, x]]=[x,[[x, p], p]]=\operatorname{ad}_{x}\left(\operatorname{pr}_{\operatorname{ann}(x)^{\perp}}[[x, p], p]\right)\right.
$$

which together with the above formulae proves (10).
The geometry of the Hamiltonian flows on cotangent bundles, in this representation, is studied by Bloch, Brockett and Crouch [1]. The system (9), (10), for $\epsilon=0$, agrees with equations (2.7) given in [1], while the system (7), (8) differs from equations (2.19) [1]. Equations (2.19) [1] describe the geodesic flows of submersion (or collective) metrics on the orbit $\mathcal{O}(a)$, and, in general, are not G-invariant. Recall that the submersion metrics are given by Hamiltonians of the form $H=\frac{1}{2}\left\langle\Phi_{0}(x, p), \phi \Phi_{0}(x, p)\right\rangle$, where ϕ is a symmetric, positive definite operator on \mathfrak{g}. Specially, K_{0} is both G-invariant and submersion metric.

3. Integrable flows

Let $\mathcal{F}_{1}^{\epsilon}$ be the algebra of all analytic, polynomial in momenta, functions of the form $\mathcal{F}_{1}^{\epsilon}=\left\{p \circ \Phi_{\epsilon} \mid p \in \mathbb{R}[\mathfrak{g}]\right\}$ and \mathcal{F}_{2} be the algebra of all analytic, polynomial in momenta, G-invariant functions on $T^{*} \mathcal{O}(a)$. Then, according to the Noether theorem

$$
\left\{\mathcal{F}_{1}^{\epsilon}, \mathcal{F}_{2}\right\}_{\epsilon}=0
$$

where $\{\cdot, \cdot,\}_{\epsilon}$ are magnetic Poisson bracket with respect to $\omega+\epsilon \rho^{*} \Omega$.
Consider the Hamiltonian $H_{\epsilon}=\frac{1}{2}\left\langle\Phi_{\epsilon}, \Phi_{\epsilon}\right\rangle \in \mathcal{F}_{1}^{\epsilon}$. A simple calculation shows $H_{0}(x, p)+$ $\epsilon^{2} \frac{1}{2}\langle a, a\rangle$. Thus, we see that Hamiltonian flows of H_{0} and H_{ϵ} coincide. Since H_{ϵ} belongs to $\mathcal{F}_{1}^{\epsilon}$ it commutes with \mathcal{F}_{2}. On the other side, as a composition of the momentum mapping with an invariant polynomial, the function H_{ϵ} is also G-invariant and commutes with $\mathcal{F}_{1}^{\epsilon}$. From the above consideration and theorem 2.1 [3] we recover the Efimov result [6]:

Theorem 2. Let G be a compact Lie group and $a \in \mathfrak{g}$. The magnetic geodesic flows of normal metric (9), (10) on the adjoint orbit $\mathcal{O}(a)$ is completely integrable in the non-commutative sense.

Namely, the algebra of first integrals $\mathcal{F}_{1}^{\epsilon}+\mathcal{F}_{2}$ is complete on $\left(T^{*} \mathcal{O}(a), \omega+\epsilon \rho^{*} \Omega\right)$ (see [3]) and its invariant level sets are isotropic tori. Similarly as in the Liouville theorem, the tori are filled up with quasi-periodic trajectories of the system (9), (10) (see [9, 11]).

3.1. Integrable deformations

Let $\mathcal{A} \subset \mathbb{R}(\mathfrak{g})$ be a commutative set of polynomials with respect to Lie-Poisson brackets on \mathfrak{g}. One can always find \mathcal{A} that is complete on generic orbits $\mathcal{O}\left(\Phi_{\epsilon}(x, p)\right)$ (e.g, see [2]). Let $\Phi_{\epsilon}^{*} \mathcal{A}$ be the pull-back of \mathcal{A} by the momentum map: $\Phi_{\epsilon}^{*} \mathcal{A}=\left\{h \circ \Phi_{\epsilon} \mid h \in \mathcal{A}\right\}$.

Let \mathcal{B} be a commutative subset of \mathcal{F}_{2}, with respect to the magnetic Poisson bracket. Then $\Phi_{\epsilon}^{*} \mathcal{A}+\mathcal{B}$ is a complete commutative set on $\left(T^{*} \mathcal{O}(a), \omega+\epsilon \rho^{*} \Omega\right)$ if \mathcal{B} is a complete commutative subset of \mathcal{F}_{2}, i.e., we have

$$
\begin{equation*}
\delta=\operatorname{dim} \mathcal{O}(a)-\frac{1}{2} \operatorname{dim} \mathcal{O}\left(\Phi_{\epsilon}(x, p)\right) \tag{17}
\end{equation*}
$$

independent functions in \mathcal{B}, for a generic element $(x, p) \in T^{*} \mathcal{O}(a)$ [4].
The G-invariant polynomial in momenta functions $f(x, p)$ on $T^{*} \mathcal{O}(a)$ are in one-to-one correspondence with $\mathrm{Ad}_{G_{a}}$-invariant polynomials on \mathfrak{v} via restriction to $T_{a}^{*} \mathcal{O}(a)$: $f_{0}\left(p_{0}\right)=f\left(a, p_{0}\right)$. Next, we apply the transformation

$$
f_{0} \mapsto \bar{f}, \quad f_{0}=\left.\bar{f} \circ \Phi_{0}\right|_{x=a}=\bar{f} \circ \operatorname{ad}_{a}
$$

Within these identifications, from (2), (4) and Thimm's formula for $\epsilon=0$ [12], the magnetic Poisson bracket $\{f, g\}_{\epsilon}(x, p)$ corresponds to the following bracket (our notation is slightly different from Efimov's [6])

$$
\begin{equation*}
\{\bar{f}(\mu), \bar{g}(\mu)\}_{\mathfrak{v}}^{\epsilon}=-\langle\mu+\epsilon a,[\nabla \bar{f}(\mu), \nabla \bar{g}(\mu)]\rangle \tag{18}
\end{equation*}
$$

where $\mu=\left[a, p_{0}\right], x=\operatorname{Ad}_{g} a, p=\operatorname{Ad}_{g} p_{0}$.
Note that $\left\{\{\cdot, \cdot\}_{\mathfrak{v}}^{\lambda}, \lambda \in \mathbb{R}\right\}$ is a pencil of the compatible Poisson brackets on the algebra of $\operatorname{Ad}_{G_{a}}$-invariant polynomials $\mathbb{R}[\mathfrak{v}]^{G_{a}}$. By the use of this pencil and the completeness criterion derived in [2], it is proved that the family of polynomials

$$
\begin{equation*}
\mathcal{B}_{a}=\left\{p_{a}^{\lambda}(\mu)=p(\mu+\lambda a), \lambda \in \mathbb{R}, p \in \mathbb{R}[\mathfrak{g}]^{G}, \eta \in \mathfrak{v}\right\} . \tag{19}
\end{equation*}
$$

is a complete commutative subset of $\mathbb{R}[\mathfrak{v}]^{G_{a}}$ with respect to the canonical brackets $\{\cdot, \cdot\}_{\mathfrak{v}}^{0}$ (see $[4,7])$. Here $\mathbb{R}[\mathfrak{g}]^{G}$ is the algebra of Ad_{G}-invariant polynomials on \mathfrak{g}. Using the method of [2], it can be verified that \mathcal{B}_{a} is a complete commutative set with respect to the magnetic Poisson bracket (18) as well.

Let b be an element from the centre of $\operatorname{ann}(a)$. Define the sectional operator $\bar{\phi}_{a, b}: \mathfrak{v} \rightarrow \mathfrak{v}$ by $\bar{\phi}_{a, b}=\operatorname{ad}_{a}^{-1} \circ \operatorname{ad}_{b}=\operatorname{ad}_{b} \circ \operatorname{ad}_{a}^{-1}$. For compact groups, among sectional operators we can take positive definite ones. It easily follows from [8] that the function $\bar{H}_{a, b}=\frac{1}{2}\left\langle\bar{\phi}_{a, b}(\mu), \mu\right\rangle$ belongs to \mathcal{B}_{a}. The corresponding G-invariant function is

$$
H_{a, b}(x, p)=\frac{1}{2}\left\langle\operatorname{ad}_{b_{x}} p, \operatorname{ad}_{x} p\right\rangle=-\frac{1}{2}\left\langle\operatorname{ad}_{x} \operatorname{ad}_{b_{x}} p, p\right\rangle=\frac{1}{2}\left\langle\phi_{x, b_{x}} p, p\right\rangle
$$

where $b_{x}=\operatorname{Ad}_{g} b, x=\operatorname{Ad}_{g} a$ and $\phi_{x, b_{x}}=-\operatorname{ad}_{x} \operatorname{ad}_{b_{x}}$. (Recall that b belongs to the centre of $\operatorname{ann}(a)$ and since G is a compact connected Lie group, G_{a} is also connected, so b_{x} is well defined.) This is a Hamiltonian function of the G-invariant metric $K_{a, b}$:

$$
\begin{equation*}
K_{a, b}\left(\eta_{1}, \eta_{2}\right)=\left\langle\left(\operatorname{ad}_{b_{x}}\right)^{-1} \eta_{1}, \operatorname{ad}_{x}^{-1} \eta_{2}\right\rangle, \tag{20}
\end{equation*}
$$

where $\eta_{1}, \eta_{2} \in T_{x} \mathcal{O}(a)$. Whence, we get the following statement:
Theorem 3. The magnetic geodesic flows of the metrics $K_{a, b}$ with respect to the magnetic term $\in \Omega$:

$$
\begin{aligned}
\dot{x} & =-\operatorname{ad}_{x} \operatorname{ad}_{b_{x}} p=\left[\left[b_{x}, p\right], x\right], \\
p & =-\operatorname{ad}_{x}^{-1}\left[p,\left[x,\left[b_{x}, p\right]\right]\right]+\operatorname{pr}_{\operatorname{ann}(x)}\left[\left[b_{x}, p\right], p\right]+\epsilon\left[b_{x}, p\right]
\end{aligned}
$$

are completely integrable in the commutative sense, by means of analytic, polynomial in momenta first integrals.

The Liouville Lagrangian tori are additionally foliated by δ-dimensional invariant isotropic tori, level sets of integrals $\mathcal{F}_{1}^{\epsilon}+\mathcal{B}_{a}$ (δ is given by (17)). Note that δ does not depend on ϵ : for a generic $\eta \in \mathfrak{v}$ we have equality $\operatorname{dim} \mathcal{O}(\eta+\epsilon a)=\operatorname{dim} \mathcal{O}(\eta)$ for all $\epsilon \in \mathbb{R}$ (see $[4,7]$). Therefore, the influence of the magnetic fields $\epsilon \Omega, \epsilon \in \mathbb{R}$ reflects as a deformation of the foliation of the phase space $T^{*} \mathcal{O}(a)$ by invariant tori. As the magnetic field increases, the magnetic geodesic lines become more curved.

3.2. Concluding remarks

One can take b such that the operator $\phi_{x, b_{x}}$ is positive, but with kernel different from zero. Then the Hamiltonian flow of $H_{a, b}$, for $\epsilon=0$, represents an integrable sub-Riemannian geodesic flow on the orbit $\mathcal{O}(a)$ with the constraint distribution D at the point x given by the image

$$
D_{x}=\phi_{x, b_{x}}\left(T_{x}^{*} \mathcal{O}(a)\right)=\operatorname{ad}_{b_{x}}(\operatorname{ann}(x))^{\perp} \subset T_{x} \mathcal{O}(a)
$$

and the sub-Riemannian structure defined by (20), where now $\eta_{1}, \eta_{2} \in D_{x}$. Here we assume that the distribution D is bracket generating (see [10, 4] for more details).

There is a natural generalization of the above results to the class of magnetic potential systems on coadjoint orbits as well as to the wider class of homogeneous spaces. We shall consider these problems in the forthcoming paper.

Acknowledgments

The first author was supported by Russian Found for Basic Research, RFBR 05-01-00978. The second author was supported by the Serbian Ministry of Science, Project 'Geometry and Topology of Manifolds and Integrable Dynamical Systems’.

References

[1] Bloch A M, Brockett R W and Crouch P E 1997 Double bracket equations and geodesic flows on symmetric spaces Commun. Math. Phys. 187 357-73
[2] Bolsinov A V 1991 Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution Izv. Acad. Nauk SSSR, Ser. Mat. 55 68-92 (Russian)
Bolsinov A V 1992 Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution Math. USSR-Izv. 38 69-90 (Engl. Transl.)
[3] Bolsinov A V and Jovanović B 2003 Non-commutative integrability, moment map and geodesic flows Ann. Glob. Anal. Geom. 23 305-22 (Preprint math-ph/0109031)
[4] Bolsinov A V and Jovanović B 2004 Complete involutive algebras of functions on cotangent bundles of homogeneous spaces Math. Z. 246 213-36
[5] Efimov D I 2004 The magnetic geodesic flows in a homogeneous field on the complex projective space Sib. Mat. Zh. 45 566-76 (Russian)
Efimov D I 2004 The magnetic geodesic flows in a homogeneous field on the complex projective space Siberian Math. J. 45 465-74 (Engl. Transl.)
[6] Efimov D I 2005 The magnetic geodesic flows on a homogeneous symplectic manifold Sib. Math. Zh. 46 106-18 (Russian)
Efimov D I 2005 The magnetic geodesic flows on a homogeneous symplectic manifold Siberian Math. J. 46 83-93 (Engl. Transl.)
[7] Mykytyuk I V and Panasyuk A 2004 Bi-Poisson structures and integrability of geodesic flows on homogeneous spaces Transformation Groups 9 289-308
[8] Mishchenko A S and Fomenko A T 1978 Euler equations on finite-dimensional Lie groups Izv. Acad. Nauk SSSR, Ser. Mat. 42 396-415 (Russian)
Mishchenko A S and Fomenko A T 1978 Euler equations on finite-dimensional Lie groups Math. USSRIzv. 12 371-89 (Engl. Trans1.)
[9] Mishchenko A S and Fomenko A T 1978 Generalized Liouville method of integration of Hamiltonian systems Funkts. Anal. Prilozh. 12 46-56 (Russian)
Mishchenko A S and Fomenko A T 1978 Generalized Liouville method of integration of Hamiltonian systems Funct. Anal. Appl. 12 113-21 (Engl. Transl.)
[10] Montgomery R 2002 A tour of sub-Riemannian geometries, their geodesics and applications Math. Surv. Monogr. 91, AMS
[11] Nekhoroshev N N 1972 Action-angle variables and their generalization Tr. Mosk. Mat. O.-va. 26 181-98 (Russian)
Nekhoroshev N N 1972 Action-angle variables and their generalization Trans. Moscow Math. Soc. 26 180-98 (Engl. Transl.)
[12] Thimm A 1981 Integrable geodesic flows on homogeneous spaces Ergodic Theor. Dyn. Syst. 1 495-517

